Grandstream Networks, Inc.
DHCP Options Guide
Using Linux server
Table of Contents

SUPPORTED DEVICES .. 5

INTRODUCTION ... 6

ENVIRONMENT SETUP .. 7

 - Step 1: Install DHCP Server .. 7
 - Step 2: DHCP Server Basic Configuration ... 7
 - Start and Stop DHCP service .. 8

DHCP OPTIONS .. 9

 - DHCP Option 42 (NTP Server) .. 9
 - DHCP Option 2 (Time Offset) ... 10
 - DHCP Option 66 (TFTP Server Name) .. 11
 - DHCP Option 43 (Vendor Specific Information) .. 12
 - DHCP Option 12 (Host Name) ... 13
 - DHCP Option 60 (Vendor Class Identifier) .. 14
 - DHCP Option 120 (SIP Server) .. 15
 - DHCP Option 125 (Vendor-Identifying Vendor Options) ... 16
 - DHCP Option 132 (Vlan ID) ... 17
 - DHCP Option 133 (QoS priority level) ... 18
 - DHCP Option 150 (TFTP Servers List) .. 19
 - DHCP Option 160 (Configuration Server Address) ... 20
 - DHCP Option 242 (Avaya IP Phones) ... 21
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Installing isc-dhcp-server</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2</td>
<td>isc-dhcp-server file</td>
<td>7</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Edit isc-dhcp-server file</td>
<td>7</td>
</tr>
<tr>
<td>Figure 4</td>
<td>"dhcpd.conf" file</td>
<td>8</td>
</tr>
<tr>
<td>Figure 5</td>
<td>"dhcpd.conf"</td>
<td>8</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Restart/Start/Stop Services</td>
<td>8</td>
</tr>
<tr>
<td>Figure 7</td>
<td>DHCP Option 42</td>
<td>9</td>
</tr>
<tr>
<td>Figure 8</td>
<td>DHCP Discover Request for Option 42</td>
<td>9</td>
</tr>
<tr>
<td>Figure 9</td>
<td>DHCP Offer Reply for the Option 42</td>
<td>9</td>
</tr>
<tr>
<td>Figure 10</td>
<td>DHCP Option 2</td>
<td>10</td>
</tr>
<tr>
<td>Figure 11</td>
<td>DHCP Discover Request for Option 2</td>
<td>10</td>
</tr>
<tr>
<td>Figure 12</td>
<td>DHCP Offer Reply for the Option 2</td>
<td>10</td>
</tr>
<tr>
<td>Figure 13</td>
<td>DHCP Option 66</td>
<td>11</td>
</tr>
<tr>
<td>Figure 14</td>
<td>DHCP Discover Request for Option 66</td>
<td>11</td>
</tr>
<tr>
<td>Figure 15</td>
<td>DHCP Offer Reply for the Option 66</td>
<td>11</td>
</tr>
<tr>
<td>Figure 16</td>
<td>DHCP Option 43</td>
<td>12</td>
</tr>
<tr>
<td>Figure 17</td>
<td>DHCP Discover Request for Option 43</td>
<td>12</td>
</tr>
<tr>
<td>Figure 18</td>
<td>DHCP Offer Reply for the Option 43</td>
<td>12</td>
</tr>
<tr>
<td>Figure 19</td>
<td>DHCP Discover Advertisement for Option 12</td>
<td>13</td>
</tr>
<tr>
<td>Figure 20</td>
<td>DHCP Option 60</td>
<td>14</td>
</tr>
<tr>
<td>Figure 21</td>
<td>DHCP Discover Advertisement for Option 60</td>
<td>14</td>
</tr>
<tr>
<td>Figure 22</td>
<td>DHCP Offer Reply for Option 60</td>
<td>14</td>
</tr>
<tr>
<td>Figure 23</td>
<td>DHCP Option 120</td>
<td>15</td>
</tr>
<tr>
<td>Figure 24</td>
<td>DHCP Discover Request for Option 120</td>
<td>15</td>
</tr>
<tr>
<td>Figure 25</td>
<td>DHCP Offer Reply for Option 120</td>
<td>15</td>
</tr>
<tr>
<td>Figure 26</td>
<td>DHCP Discover Advertisement for Option 125</td>
<td>16</td>
</tr>
<tr>
<td>Figure 27</td>
<td>DHCP Option 132</td>
<td>17</td>
</tr>
<tr>
<td>Figure 28</td>
<td>DHCP Discover Request for Option 132</td>
<td>17</td>
</tr>
<tr>
<td>Figure 29</td>
<td>DHCP Offer Reply for Option 132</td>
<td>17</td>
</tr>
</tbody>
</table>
Figure 30: DHCP Option 133 ... 18
Figure 31: DHCP Discover Request for Option 133 ... 18
Figure 32: DHCP Offer Reply for Option 133 .. 18
Figure 33: DHCP Option 150 ... 19
Figure 34: DHCP Discover Request for Option 150 ... 19
Figure 35: DHCP Offer Reply for Option 150 .. 19
Figure 36: DHCP Option 160 ... 20
Figure 37: DHCP Discover Request for Option 160 ... 20
Figure 38: DHCP Offer Reply for Option 160 .. 20
Figure 39: DHCP Option 242 ... 21
Figure 40: DHCP Discover Request for Option 242 ... 21
Figure 41: DHCP Offer Reply for Option 242.. 21

SUPPORTED DEVICES

Following table shows Grandstream products supporting DHCP Options:

<table>
<thead>
<tr>
<th>DHCP Options</th>
<th>Grandstream Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GXP16XX</td>
</tr>
<tr>
<td>Option 2</td>
<td>✓</td>
</tr>
<tr>
<td>Option 12</td>
<td>✓</td>
</tr>
<tr>
<td>Option 42</td>
<td>✓</td>
</tr>
<tr>
<td>Option 43</td>
<td>✓</td>
</tr>
<tr>
<td>Option 60</td>
<td>✓</td>
</tr>
<tr>
<td>Option 66</td>
<td>✓</td>
</tr>
<tr>
<td>Option 120</td>
<td>✓</td>
</tr>
<tr>
<td>Option 125</td>
<td>✓</td>
</tr>
<tr>
<td>Option 132</td>
<td>✗</td>
</tr>
<tr>
<td>Option 133</td>
<td>✗</td>
</tr>
<tr>
<td>Option 150</td>
<td>✓</td>
</tr>
<tr>
<td>Option 160</td>
<td>✓</td>
</tr>
<tr>
<td>Option 242</td>
<td>✗</td>
</tr>
</tbody>
</table>
INTRODUCTION

Dynamic Host Configuration Protocol (DHCP) is a standardized network protocol used on Internet Protocol (IP) networks for dynamically distributing network configuration parameters, such as IP addresses for interfaces and services. With DHCP, network devices request IP addresses and networking parameters automatically from a DHCP server, reducing the need for a network administrator or a user to configure these settings manually.

DHCP servers can be configured to provide optional data that fully configures TCP/IP on a client. Some of the most common DHCP option types configured and distributed by the DHCP server during leases include default gateway, router, DNS, and WINS parameters.

This guide describes advanced DHCP options supported on Grandstream products. Administrators can use these DHCP options for easy setup, to provide specific configuration per device model, synchronize time with NTP servers, configure ACS server URL on devices and more…
ENVIRONMENT SETUP

This chapter provides steps to setup a minimal test environment to run DHCP options described in this guide. In this guide, we will use isc-dhcp-server on an Ubuntu 12 machine with static IP 192.168.1.11. Administrators can use other Windows or Linux based DHCP servers at their convenience.

Note: This chapter can be skipped if a DHCP server supporting customizing options is already setup.

Step 1: Install DHCP Server

1. Launch a Linux terminal.
2. Login as root by typing `sudo su`
3. Download and install DHCP server using following command: `apt-get install isc-dhcp-server`

   ```
   root@admin:/# apt-get install isc-dhcp-server
   ```

 Figure 1: Installing isc-dhcp-server

Step 2: DHCP Server Basic Configuration

There are two main files to be configured:

- `/etc/default/isc-dhcp-server` (specify network interface to use for DHCP server)
- `/etc/dhcp/dhcpd.conf` (all DHCP Options in this guide can be defined in dhcpd.conf file)

1. Enter `nano /etc/default/isc-dhcp-server` to edit `isc-dhcp-server` file

   ```
   # nano /etc/default/isc-dhcp-server
   ```

 Figure 2: isc-dhcp-server file

2. Replace `eth0` with the network interface to use for DHCP server.

 Figure 3: Edit isc-dhcp-server file
3. Save and exit the file using Ctrl+X
4. Enter `nano /etc/dhcp/dhcpd.conf` to edit `dhcpd.conf` file

```
root@admin:# nano /etc/dhcp/dhcpd.conf
```

Figure 4: “dhcpd.conf” file

5. Configure DHCP server with basic options including `subnet`, `netmask`, `range`...
 Screenshot below shows an example of configuration; in this example DHCP server will provide clients IP addresses from range 192.168.1.10 to 192.168.1.200. The server will lease an IP address for 180 seconds if no specific time frame requested by the client; otherwise, maximum (allowed) lease is 7200 seconds. DHCP server will also advise clients to use 255.255.255.0 as subnet mask, 192.168.1.10 as router/gateway, 192.168.1.1 and 192.168.1.2 as DNS servers.

```plaintext
# Sample configuration file for ISC dhcpd for Debian
#
# Attention: If /etc/ltsp/dhcpd.conf exists, that will be used as
# configuration file instead of this file.

authoritative;
default-lease-time 180;
max-lease-time 7200;
option routers 192.168.1.10;
option domain-name-servers 192.168.1.1, 192.168.1.2;
option domain-name "KMEA.com";

subnet 192.168.1.0 netmask 255.255.255.0 {
    range 192.168.1.10 192.168.1.200;
}
```

Figure 5: “dhcpd.conf”

6. Restart DHCP server

Start and Stop DHCP service

```
service lsc-dhcp-server restart
service lsc-dhcp-server start
service lsc-dhcp-server stop
```

Figure 6: Restart/Start/Stop Services
DHCP OPTIONS

DHCP Option 42 (NTP Server)

Description

DHCP option 42 specifies a list of NTP servers available to the client by IP address. Please refer to RFC2132 for more details.

Example

```
option ntp-servers 192.168.1.12;
```

Figure 7: DHCP Option 42

Screenshots

Below screenshots of DHCP Discover/Offer for Option 42.

Figure 8: DHCP Discover Request for Option 42

Figure 9: DHCP Offer Reply for the Option 42
DHCP Option 2 (Time Offset)

Description

DHCP option 2 informs the client about the time zone offset (in seconds).
A positive offset indicates a location east of the zero meridian and a negative offset indicates a location west of the zero meridian.

Please refer to RFC2132 for more details.

Example

```
option time-offset 3600;
```

Figure 10: DHCP Option 2

In above example, GMT+1 was set as an offset value
(one hour * 60 minutes/hour * 60 seconds/minute) = 3600.

To set Pacific Standard Time (GMT-8). This field would be filled with “-28800”.
(Eight hours * 60 minutes/hour * 60 seconds/minute).

Screenshots

Below screenshots of DHCP Discover/Offer for Option 2

Figure 11: DHCP Discover Request for Option 2

Figure 12: DHCP Offer Reply for the Option 2
DHCP Option 66 (TFTP Server Name)

Description

DHCP option 66 provides the IP address or the hostname of a single provisioning server where devices will be redirected to get their configuration files. Without this DHCP option, a manual configuration is requested on each phone the first time it boots.

Please refer to RFC2132/RFC5859 for more details.

Please refer to below link to learn how to provision Grandstream devices:

Example

```
option tftp-server-name "192.168.1.18";
option tftp-server-name "http://192.168.1.18";
```

Figure 13: DHCP Option 66

If http:// is not specified, default TFTP protocol is used for configured server.

Screenshots

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>4.224</td>
<td>0.0.0.0</td>
<td>255.255.255.255</td>
<td>DHCP</td>
<td>DHCP Discover - Transaction ID 0x8119678</td>
</tr>
<tr>
<td>64</td>
<td>5.227</td>
<td>192.168.1.1</td>
<td>192.168.1.16</td>
<td>DHCP</td>
<td>DHCP Offer - Transaction ID 0x8119678</td>
</tr>
<tr>
<td>67</td>
<td>5.231</td>
<td>0.0.0.0</td>
<td>255.255.255.255</td>
<td>DHCP</td>
<td>DHCP Request - Transaction ID 0x8119678</td>
</tr>
<tr>
<td>68</td>
<td>5.256</td>
<td>192.168.1.1</td>
<td>192.168.1.16</td>
<td>DHCP</td>
<td>DHCP ACK - Transaction ID 0x8119678</td>
</tr>
</tbody>
</table>

Parameter Request List Item: (69) Rebinding Time Value
Parameter Request List Item: (66) TFTP Server Name
Parameter Request List Item: (120) SIP Servers

Figure 14: DHCP Discover Request for Option 66

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>4.224</td>
<td>0.0.0.0</td>
<td>255.255.255.255</td>
<td>DHCP</td>
<td>DHCP Discover - Transaction ID 0x8119678</td>
</tr>
<tr>
<td>64</td>
<td>5.227</td>
<td>192.168.1.1</td>
<td>192.168.1.16</td>
<td>DHCP</td>
<td>DHCP Offer - Transaction ID 0x8119678</td>
</tr>
<tr>
<td>67</td>
<td>5.231</td>
<td>0.0.0.0</td>
<td>255.255.255.255</td>
<td>DHCP</td>
<td>DHCP Request - Transaction ID 0x8119678</td>
</tr>
<tr>
<td>68</td>
<td>5.256</td>
<td>192.168.1.1</td>
<td>192.168.1.16</td>
<td>DHCP</td>
<td>DHCP ACK - Transaction ID 0x8119678</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option: (43) Vendor-Specific Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option: (66) TFTP Server Name</td>
</tr>
<tr>
<td>Length: 12</td>
</tr>
<tr>
<td>TFTP Server Name: 192.168.1.18</td>
</tr>
<tr>
<td>Option: (120) SIP Servers</td>
</tr>
</tbody>
</table>

Figure 15: DHCP Offer Reply for the Option 66
DHCP Option 43 (Vendor Specific Information)

Description

This option is used by clients and servers to exchange vendor-specific information. DHCP server can send one or more vendor specific parameters to clients, encoded in the form `option_code/value_length/value` in hexadecimal format.

Please refer to RFC2132 for more details.

Example

In following example, DHCP server is configured to send CWMP information (ACS URL http://192.168.1.18) encapsulated in option 43.

```
```

Figure 16: DHCP Option 43

Above DHCP option 43 contains the following:
0x01 (CWMP option for ACS URL)
0x13 (hex of decimal 19 = length of the URL)
19 bytes forming the URL in hexadecimal format (http://192.168.1.18)

Screenshots

![Figure 17: DHCP Discover Request for Option 43](image)

Parameter Request List Item: (42) Network Time Protocol Servers
Parameter Request List Item: (43) Vendor-Specific Information
Parameter Request List Item: (51) IP Address Lease Time

![Figure 18: DHCP Offer Reply for the Option 43](image)

- Option: (42) Network Time Protocol Servers
- Option: (43) Vendor-Specific Information
- Length: 21
- Value: 0113687474703A2F2F3113922E3136382E312E3138
- Option: (58) Renewal Time Value
DHCP Option 12 (Host Name)

Description

This option specifies the name of the client. Option 12 is used to identify the client’s name against the DHCP server in order to make special configuration from the server side, this is similar to option 60 and 125. Please refer to RFC1533/RFC2132 for more details.

Screenshots

Below screenshot is taken from GXP2170, the value of Option 12 can be modified from the WebGUI under Network Settings > Basic Settings.

Figure 19: DHCP Discover Advertisement for Option 12
DHCP Option 60 (Vendor Class Identifier)

Description

Option 60 is used by clients to optionally identify the vendor type and configuration of a DHCP client. When using multiple devices from different vendors, DHCP server can provide specific configuration for each client based on received Option 60. Please refer to RFC1533/RFC2132 for more details.

Example

In following example, option 60 is configured to identify GXP2170 with its value “Grandstream GXP2170 dslforum.org”.

If option 60 received matches the one configured, GXP2170 phones will get option 66 (tftp-server-name) with value 192.168.1.20. For all other clients, they will get option 66 with value 192.168.1.18

Note: 32 is the number of digits that “Grandstream GXP2170 dslforum.org” contains.

Screenshots

- Figure 20: DHCP Option 60

- Figure 21: DHCP Discover Advertisement for Option 60

- Figure 22: DHCP Offer Reply for Option 60
DHCP Option 120 (SIP Server)

Description

The option is used to provide SIP server IP address or FQDN to SIP clients.

Please refer to RFC3361 for more details.

Example

Figure 23: DHCP Option 120

```
option sip-servers code 120 = [ integer 8, tp-address ];
option sip-servers 1 192.168.1.17;
```

Screenshots

Figure 24: DHCP Discover Request for Option 120

![DHCP Discover Request](image)

Figure 25: DHCP Offer Reply for Option 120

![DHCP Offer Reply](image)
DHCP Option 125 (Vendor-Identifying Vendor Options)

Description

DHCP clients may use this option to identify the vendor that manufactured the hardware on which the client is running the software in use in a unique way.

Option 125 is similar to option 12 & 60 but advertising more parameters of a device:

- **DeviceManufacturerOUI**
- **DeviceSerialNumber** (Grandstream products set DeviceSerialNumber with MAC address)
- **DeviceProductClass**

Please refer to RFC3925 for more details.

Screenshots

During DHCP initiation, **DHCP Discover/DHCP Request** including option 125 are sent from client, the server checks **V-I Vendor-specific information**, if matching configured values, specific configuration will be provided to client, otherwise, common configuration is provided to client.

![Figure 26: DHCP Discover Advertisement for Option 125](image)

Advertised information in above option 125 are:

- **DeviceManufacturerOUI** = **000b82**
- **DeviceSerialNumber** = **DeviceMACaddress** = **000b82XXXXXX**
- **DeviceProductClass** = **GXV3370**
DHCP Option 132 (Vlan ID)

Description

This option allows to assign a VLAN ID tag to devices during booting stage/DHCP renewal.

Please refer to RFC4578 / IEEE_802.1Q for more details.

Example

```plaintext
option vlan-id code 132 = text;
option vlan-id "20";
```

Figure 27: DHCP Option 132

Screenshots

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>4.224</td>
<td>0.0.0.0</td>
<td>255.255.255.255</td>
<td>DHCP</td>
<td>DHCP Discover - Transaction ID 0x8119678</td>
</tr>
<tr>
<td>64</td>
<td>5.227</td>
<td>192.168.1.1</td>
<td>192.168.1.16</td>
<td>DHCP</td>
<td>DHCP Offer - Transaction ID 0x8119678</td>
</tr>
<tr>
<td>65</td>
<td>5.231</td>
<td>0.0.0.0</td>
<td>255.255.255.255</td>
<td>DHCP</td>
<td>DHCP Request - Transaction ID 0x8119678</td>
</tr>
<tr>
<td>66</td>
<td>5.256</td>
<td>192.168.1.1</td>
<td>192.168.1.16</td>
<td>DHCP</td>
<td>DHCP ACK - Transaction ID 0x8119678</td>
</tr>
</tbody>
</table>

Parameter Request List Item: (125) Y-I Vendor-specific Information
Parameter Request List Item: (132) PXE - undefined (vendor specific)
Parameter Request List Item: (133) PXE - undefined (vendor specific)

Figure 28: DHCP Discover Request for Option 132

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>4.224</td>
<td>0.0.0.0</td>
<td>255.255.255.255</td>
<td>DHCP</td>
<td>DHCP Discover - Transaction ID 0x8119678</td>
</tr>
<tr>
<td>64</td>
<td>5.227</td>
<td>192.168.1.1</td>
<td>192.168.1.16</td>
<td>DHCP</td>
<td>DHCP Offer - Transaction ID 0x8119678</td>
</tr>
<tr>
<td>65</td>
<td>5.231</td>
<td>0.0.0.0</td>
<td>255.255.255.255</td>
<td>DHCP</td>
<td>DHCP Request - Transaction ID 0x8119678</td>
</tr>
<tr>
<td>66</td>
<td>5.256</td>
<td>192.168.1.1</td>
<td>192.168.1.16</td>
<td>DHCP</td>
<td>DHCP ACK - Transaction ID 0x8119678</td>
</tr>
</tbody>
</table>

- Option: (120) SIP Servers
 - Option: (132) PXE - undefined (vendor specific)
 - Length: 2
 - Value: 3230
- Option: (133) PXE - undefined (vendor specific)

Figure 29: DHCP Offer Reply for Option 132

In above screenshot, value 3230 is 20 (vlan-id) converted from text to hexadecimal.

Note: After getting VLAN ID from DHCP server and finishing DHCP process, the device will send a second DHCP discover its new assigned VLAN tag to get an IP address on the VLAN range.
DHCP Option 133 (QoS priority level)

Description

This option assigns the priority within an Ethernet frame header when using VLAN tag, it specifies a priority value between 0 and 7 to differentiate the traffic priority.

Please refer to RFC4578 / IEEE_P802.1p for more details

Example

```
option vlan-qos code 133 = text;
option vlan-qos "5";
```

Figure 30: DHCP Option 133

Screenshots

Figure 31: DHCP Discover Request for Option 133

```
Parameter Request List Item: (132) PXE - undefined (vendor specific)
Parameter Request List Item: (133) PXE - undefined (vendor specific)
Parameter Request List Item: (160) Unassigned
```

Figure 32: DHCP Offer Reply for Option 133

In above screenshot, value 35 is 5 (priority level) converted from text to hexadecimal.
DHCP Option 150 (TFTP Servers List)

Description

DHCP option 150 provides one or more IP addresses of TFTP server(s) where devices will be redirected to download their configuration files. Without this DHCP option, a manual configuration is requested on each phone the first time it boots.

Please refer to RFC5859 for more details.

Please refer to below link to learn how to how to provision Grandstream devices:

Example

```plaintext
option option-150 code 150 = ip-address;
option option-150 192.168.1.18;
```

Figure 33: DHCP Option 150

Screenshots

Figure 34: DHCP Discover Request for Option 150

```
Option: (120) SIP Servers
Option: (135) V-V Vendor-specific Information
Option: (150) TFTP Server Address
```

Figure 35: DHCP Offer Reply for Option 150

```
Option: (120) SIP Servers
Option: (150) TFTP Server Address
  Length: 4
  TFTP Server Address: 192.168.1.18 (192.168.1.18)
Option: (255) End
```
DHCP Option 160 (Configuration Server Address)

Description

Similar to option 66, DHCP option 160 can provide one or more configuration server(s) to clients to get automatically provisioned. Without this DHCP option, a manual configuration is requested on each phone the first time it boots.

Example

```
option option-160 code 160 = text;
option option-160 "tftp://192.168.1.123666":
```

Figure 36: DHCP Option 160

Screenshots

Figure 37: DHCP Discover Request for Option 160

![Screenshot of DHCP Discover Request for Option 160]

Parameter Request List Item: (133) PXE - undefined (vendor specific)
Parameter Request List Item: (160) Unassigned
Parameter Request List Item: (242) Private

Figure 38: DHCP Offer Reply for Option 160

![Screenshot of DHCP Offer Reply for Option 160]

In above screenshot, the value of the TFTP server was converted to hexadecimal. The phone contacts this IP address to get provisioned after receiving TFTP server value.
DHCP Option 242 (Avaya IP Phones)

Description

Once this option enabled, the phone will use configuration info issued by DHCP sever. Option 242 can include following parameters:

- MC IP address
- VLAN configuration
- HTTP server, Proxy
- Transport Protocol

Example

```
option option-242 code 242 = string;
option option-242 "MCIPADD=192.168.1.30,HTTPS SRVR=192.168.1.31"
```

Figure 39: DHCP Option 242

Screenshots

Figure 40: DHCP Discover Request for Option 242

Figure 41: DHCP Offer Reply for Option 242

In above screenshot, MCIPADD and HTTPSRVR are converted to hexadecimal.